
Comparing TDA Methods of Time Series Analysis

1 Background & Motivation

Time series analysis is a well-explored field of interest, with a focus on studying the seasonality and
topological structures of such data. Time series with repeating patterns of measures are sometimes called
seasonal, and the number of times a given pattern is repeated in one time interval is referred to as the
periodicity or frequency of the time series.

Figure 1

For some series, periodicity is easy to identify and expected. For
instance, consider the collection of average monthly temperatures in
Dubuque Iowa from 1964 to 1975 in Figure 1 (Cryer and Chan [2008]).
This time series is seasonal in the sense that a pattern of low-to-high-to-
low temperatures repeats through the 4 seasons of each year a total of
12 times. Hence, this data is periodic with frequency of 12 cycles over 12
years. Not all time series have periodicities that are easy to identify if they
exist, however. Because of this, we review and compare several methods
that have been constructed to study the periodicity of such time series.

The topology of time series, however, is a more recently studied field.
We summarize and apply a variety of methods constructed to analyze the
topology of time series. We pull most of these methods from Ravishanker
and Chen [2019]. We implement these pipelines on three synthetic time
series with three increasing frequencies on the same domain. These con-
structions are inspired by Perea et al. [2015] and Ravishanker and Chen
[2019]. Our functions are given by:

Low frequency: x(t) = sin
(
2π( 2

T )t
)
(2 cycles every T time points)

Mid frequency: y(t) = sin
(
2π( 4

T )t
)
(4 cycles every T time points)

High freqency: z(t) = sin
(
2π( 8

T )t
)
(8 cycles every T time points)

2 Converting Time Series to Point-Clouds

One common approach for studying the topology of time series is the use of persistence homology. This
involves varying some parameter within a given set of data and summarizing which structural features (i.e.
connected components, holes, voids, tunnels, etc.) appear and disappear throughout the variation. However,
using this approach requires that data have point cloud structure (i.e. are sampled from the underlying surface
of some n-dimensional manifold). Time series do not inherently have point-cloud structure, and because of
this, cannot be used directly for topological data analysis (TDA). One common approach to resolve this issue
is to map time series data points onto d-dimensional point clouds. We discuss one such mapping, Takens
embedding. This embedding was constructed by Floris Takens (Takens [1981]), and involves mapping each
time measure in {x(t)|t = 1, 2, . . . T} to a point cloud in d dimensions using a time delay parameter τ . The
embedding is given by:

xt → vt =
(
xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ

)T
.

Hence the resulting point cloud will haveN = T−(d−1)τ d-dimensional points. The embedding dimension
d and delay (or lag) parameter τ are user-chosen. Several methods including False Nearest Neighbors (FNN)
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Tests have been implemented to select choices of d (Truong [2017], Khasawneh and Munch [2016], Seversky
et al.), while some just assume d = 2 or d = 3 (Pereira and de Mello [2015]). Kennel’s and Cao’s tests are
two such FNN tests commonly utilized (Krakovská et al. [2015]). Methods using the autocorrelation function
(Khasawneh and Munch [2016], Truong [2017]) and mutual information (Pereira and de Mello [2015]) of a
time series have also been implemented to select choices of τ . For our implementation, we select d = 2 and
τ = 30 for easy visualization, and so we have a sufficient number of points in our point cloud. Observe our
resulting series, embedded point clouds, and persistence diagrams after this embedding below. Generally, the
more periodic the series (i.e. the higher the frequency of repeating patterns), the more circular or rounded
the point cloud is. Hence in a given Vietoris-Rips filtration, as we increase our filter parameter around
points, circles in the point cloud will live longer. This is shown in Figure 2 with point clouds becoming
increasingly rounded and the red triangles appearing farther away from the diagonal as we move from x(t)
to z(t). One feature to note about Takens embedding is that it preserves topological properties of time series
across different dimensions.

3 Comparing Distances Between Diagrams

As well as studying the persistence homology of time series, many are also interested in comparing
homology in different dimensions. One method used to do this is to quantify any differences between diagrams
by computing distances between their corresponding points (Ravishanker and Chen [2019]). In our context,
we will use Wasserstein distance between pairs of persistence diagrams to show the preservation of topological
features for increasing embedding dimensions.

Figure 2

Let’s first define Wasserstein distance. Let σp,k

be the k-th p homology class produced in a persis-
tence diagram Γ1 for a given series. Suppose we have
another persistence diagram Γ2 produced from the
same time series. For all possible bijections f be-
tween points in Γ1 and Γ2, the Wasserstein distance
between both diagrams is given as:

Wq,p(Γ1,Γ2) =
(
inff

∑
σp,k∈Γ1

|σp,k−f(σp,k)|q∞
)1/q

for q = 1, 2, . . .

When our Wasserstein dimension q is ∞, we are
just minimizing the maximum distance between any
two points in Γ1 and Γ2 (Ravishanker and Chen
[2019]). This is the bottleneck distance:

W∞,p(Γ1,Γ2) = inff

(
maxσp,k∈Γ1{|σp,k−f(σp,k)|}

)
Observe the persistence diagrams of x(t),y(t),

and z(t) in columns 1, 2, and 3 of Figure 3, respec-
tively. We compute these diagrams for embedding dimensions 2,3,and 4 in rows 1, 2, and 3, respectively.
Notice that visually we can see that the topological properties are preserved for each series for each dimen-
sion. That is, the low-frequency diagrams (column 1) are the most different compared to the middle and
high-frequency diagrams (columns 2 & 3) in terms of distances between their 0 and 1-homology groups. As
well, the middle and high-frequency diagrams are the most similar. These patterns are shown in our table
of Wasserstein and Bottleneck distances between all pairs of diagram points. In all three cases of dimension,
the largest distances computed were between the low-frequency and mid or high-frequency diagrams, and the
lowest distances computed were between the low and mid-frequency or mid and high-frequency diagrams.
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4 Quantifying Periodicity

Figure 3

SW1PerS (Sliding Windows and 1-Persistence
Scoring) is a method developed by Perea et al. [2015]
to quantify the periodicity of a time series by mea-
suring how often distinct patterns in its signal re-
peat. Most of our code is borrowed from Ravis-
hanker and Chen [2019]. We summarize the steps
below:

Simulate Noisy Series. We sample 216 evenly-
spaced time units on [0, 2π] and evaluate our three
series x, y, and z at these times. We then add Gaus-
sian noise to each with mean 0 and constant variance
0.5. We explain the steps used to obtain a period-
icity score for x(t). We repeat these methods for y
and z.

De-Noise Series. To de-noise our data, we ob-
tain a locally averaged version of x(t), xavg(t), us-
ing a simple moving average with window size one
third of the selected embedding dimension. We se-
lect Pereira and de Mello [2015]’s recommended em-
bedding dimension d = 15.

Fit a Cubic Spline to Series. We then con-
struct a continuous approximation of xavg(t) by
mapping its time units 0, . . . , T − 1 linearly to the
interval [0, 2π]. We fit a cubic spline to xavg(t) to ob-
tain its continuous version xct(t) : [0, 2π] → R such
that xct(0) = xavg(0) and xct(2π) = xavg(T − 1).

Embed the Series Using Sliding Windows.
We then embed xct(t) to a point cloud using slid-

ing windows of length τ . That is, we fix τ ∈ (0, 2π) and restrict xct(t) to the window [t, t+ τ ].

Figure 4

As we vary t from 0 to 2π, we obtain several
snapshots of xct(t). Each of these snapshots corre-
sponds to a point in the embedded point cloud. The
sliding windows embedding of xct(t) is formally de-

fined as xct(t) → vt =
(
xct(t), xct(t+ τ), . . . , xct

(
t+

(d− 1)
)
τ
)
.

Normalize & Centralize Points. We lastly
normalize and center each of our embedded points
vt so that they lay on the surface of the unit sphere
and the distance between any two points is less than
π
16 (Perea et al. [2015]). Define the average of each

d-dimensional point as avg(vt) = 1
d

∑d
i=1 vt,i, for

vt,i the i-th component in vt. Then each normal-
ized and centered point vnormt is given by vnormt =

vt+avg(vt)1√∑d
i=1

(
vt,i−avg(vt)

)2
.

3



Compute Periodicity Score. As previously mentioned, each point vnormt in the sliding windows point
cloud P represents one snapshot of xct. The more similar any two snapshots are, the closer together these
points lay on P . In addition, the greater the number of distinct patterns (snapshots) in xct, the greater the
hole in P is. We obtain b and d such that 0 ≤ b ≤ d ≤

√
3 from the 1-Persistence Homology Algorithm

(Perea et al. [2015]). The parameter b corresponds to the maximum distance between any point vnormt (t) in
P and its nearest neighbor, while d measures how rounded and wide P is. Then the 1-Persistence Score of

x(t) is given by S = 1− d2−b2

3 . Intuitively, the more periodic x(t) is, the wider and more round P gets and

hence d →
√
3. At the same time, as x(t) becomes more periodic, its snapshots become more similar and

hence closer together on P , so b → 0. Thus as the periodicity increases, S → 0, and vice verse for decreasing
periodicity (S → 1).

See Figure 4 that displays our three noisy series x,y, and z (row 1), their de-noised counterparts after
local averaging (row 2), and their persistence diagrams after filtering their sliding windows embeddings (row
3). Observe that the series increase in periodicity from left to right, and as expected, the scores decrease.

5 Sublevel Set Filtration

We introduce another method used to compute the persistence homology of a time series. For this method,
persistence diagrams are produced using sublevel set filtration on the distance to measure (DTM) function
of a given series (Ravishanker and Chen [2019], Chazal et al. [2018]). We first review the basics of sublevel
set filtration. Consider a continuous function f : Rd → R that is defined on a set of d-dimensional points
from a point cloud S. Then the sublevel set of f at level λ is considered to be the set of all d-dimensional
points whose function value is less than or equal to λ, Lλ(f) = {x ∈ S ⊆ Rd|f(x) ≤ λ}.

Figure 5

Our filtration involves varying λ and outputting
a persistence diagram of all p-dimensional features
that appear and disappear throughout. We specifi-
cally select our continuous function f to be the DTM
function given by:

f(x) =
√

1
k

∑
xi∈Nk(x)

||xi − x||2

where Nk(x) is the subset of k nearest neighbors
{xi}ki=1 of each point x in the point cloud S. As an
example, we perform sublevel set filtration on points
in the embedded point cloud S of z(t). We define the
frequency of z to be 8 cycles for every 400 units of
time. We implement the following pipeline (most of
our code is borrowed from Ravishanker and Chen
[2019]):

Observed Time Series. We simulate 400 evenly spaced time points on [0, 399] and store the corre-
sponding values of z(t). We then add Gaussian noise to z with 0.3 variance. See our plot of z(t) before
adding noise in Figure 5 (top left).

Convert to Point Cloud. We map z(t) to 395, 2-dimensional points (z(t), z(t + τ)) using Takens
embedding with τ = 5. Visualize the point cloud in Figure 5 (top right).

Apply DTM Function to Points in S. We apply the DTM function f to each point in the point cloud,

i.e. f(x) = f
((

z(t), z(t + 5)
))

. Hence f : R2 → R is a 3-dimensional plot. See the graph of f in Figure 5

(bottom left).

Sublevel Set Filtration. We apply sublevel set filtration on f to produce a persistence diagram. This
diagram reveals all p-dimensional features that appear and disappear as we vary our values of f(x) between 0
and ∞. We use the R package TDA and the function gridDiag() to do this (Ravishanker and Chen [2019]).
See Figure 5 for the persistence diagram (bottom right).
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Figure 6

Visualize Sublevel Sets.
In our persistence diagram, we observe that a 1-dimensional

hole is born when f ≈ 0.15 and dies when f ≈ 0.44. This cor-
responds to the hole produced from the horizontal cross section
of our red DTM plot at f = 0.15 and continuing until f = 0.44.
We visualize this hole appearing and disappearing by plotting
these cross sections at f = 0.10 (before the hole appears), at
f = 0.30 (after the hole appears), and at f = 0.50 (after the
hole disappears). For instance, the sublevel set at 0.3 is the
subset L0.3(f) of all points

(
z(t), z(t+5)

)
from the point cloud

whose DTM value f
((

z(t), z(t + 5)
))

is less than or equal to

0.3. See Figure 6 for these cross sections. Cross sections at
0.10, 0.30, and 0.50 are shown in red on the left, middle, and right respectively.

6 Approximations of Time Series

6.1 Fourier Approximations

Figure 7

Periodicity of time series has also been studied
using approximations by sinusoidals (Stoffer [1991]).
These sinusoidals are called spectral representations
of a given time series. That is, for more compli-
cated series whose periodicity is not able to be eas-
ily identified or assumed, one can instead study the
frequency of their sinusoidal approximations (sums
of sine and cosine functions).

Given a time series {x(t)|t = 0, . . . , 99}, with
constant sample mean such that the covariance be-
tween any two time-measures is a function of the lag
τ (time difference) between them, we can approx-
imate x(t) using the spectral representation x(t) =∑q

j=1[a(j)cos(2πλjt)+b(j)sin(2πλjt)] for q frequen-
cies λ1, . . . , λq, and q pairs of mutually uncorrelated
amplitudes (a(j), b(j)) with mean 0 and constant
variance σ2

j , j = 1, . . . , q.
As an example, we compute Fourier approxima-

tions of y(t) = x(t), with a periodicity of 4 cycles
for every 100 units of time. We begin by sampling
100 evenly spaced time points from 0 to 99. We
then compute time measures y(t) = sin(2π · 4

100 t)
for t = 0, . . . , 99. Next we add Gaussian noise with
0.3 variance, ϵt ∼ N(0, 0.3). We plot the original
noisy series in black, along with 4 different Fourier representations in Figure 7. We also include a table of
parameters for each of these approximations.

We next compute a periodogram to identify the best frequency approximation of y. We do so by first
constructing the sine and cosine representations of y separately as functions of varying frequencies λj = j

T
(j cycles per every T time units). Secondly, we use the summation of the resulting sinusoidal values squared
to plot a periodogram for frequency analysis (Stoffer [1991]). We define the cosine and sine Fourier represen-

tations of y(t) to be C(λj) =
1√
T

∑T−1
t=0 y(t)cos(2πλjt) and S(λj) =

1√
T

∑T−1
t=0 y(t)sin(2πλjt), respectively.

The periodogram is a collection of points on the graph of I(λj) = C2(λj) + S2(λj) v.s. λj that pro-
duces peaks of varying size. The tallest peak in the periodogram,

(
λ∗
j , I(λj∗)

)
, corresponds to the best

approximation λ∗
j of the true frequency of y. Here, we compute various frequencies λj as λj = j/T for

1 ≤ j ≤ T
2 , T = 100. Observe our resulting periodogram to the left. As shown in Figure 8, the highest peak
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occurs at a frequency of 0.04, which corresponds to the true frequency of y(t) ( 4
100 ). Hence, Fourier analysis

provides another way to study the periodicity of a time series by analyzing the periodicity of sinusoidals that
approximate it.

6.2 Walsh-Fourier Approximations

Figure 8

Not all time series maintain periodic behavior. Some se-
ries display a more box-like wave structure. For these series,
we can apply similar methods to approximate their seasonal
behavior using square-wave functions called Walsh functions
(Stoffer [1991]). Using Walsh functions to analyze time series
is called Walsh-Fourier analysis.

For instance, observe the time series in Figure 9. This se-
ries looks to be better approximated using square waves rather
than sinusoidal waves. Note that Walsh functions can also be
used to approximate sinusoidal series as well. For the purpose
of comparing methods, we will demonstrate the use of Walsh
functions to approximate the same series y(t) = x(t) with a pe-
riodicity of 4 cycles per every T units of time, and then perform
sublevel set filtration on its second order spectra to produce a
persistence diagram. We will be using gridDiag() to do this.

We define a Walsh function to take on two values, either 1
or -1. Then, for each time unit t of an observed series {f(t)|t = 0, . . . T − 1}, we can convert the series to
a sequence of Walsh functions W (t, λj), where t is the number of zero-crossings (moments where the Walsh
function switches from -1 to 1 or vice versa) in a given period of time T , and j is a given input of the Walsh
function defined over the time sequence t = {0, . . . , T − 1}. Intuitively, for a given value of t and j, the j-th
value of the Walsh function with t zero-crossings over T units of time is given as the value W (t, λj) = ±1,
and λj =

j
T refers to the j-th sequency.

Figure 9

More formally, we construct Walsh functions using the map-
ping W (t, λj) = {(−1)k|j ∈ {k · T

t+1 , . . . , (k + 1) · T
t+1 − 1}} for

k = 0, . . . , t, t = 0, . . . , T − 1. This is our construction, but an
alternative definition of Walsh functions that requires the order
of the time series to be a power of 2 can be found in Shanks
[1969], Ravishanker and Chen [2019], as well as in Cooley and
Tukey [1964]. We also apply an example of this in section 7.1.
Our definition simply assigns Walsh values based on values of
j that fall within t+ 1 intervals. These intervals are computed
by dividing the length of the period T by the number of zero-
crossings plus 1, (t+ 1). The Walsh transform of a time series

is defined as dw = 1√
T

∑T−1
t=0 f(t)W (t, λj) for j = 0, . . . , T − 1.

The corresponding Walsh periodogram is given by Iw(j) =
|dw|2. The highest peak in the plot of Iw(λj) v.s. λj = j

T
corresponds to the closest approximation of the sequency of f
(the number of zero-crossings per T time units). For our series
y(t) with 7 crossings for every 400 time units, the periodogram should produce an approximation close to
7

400 .
We first plot four examples of Walsh functions for t = 2, 4, 6 and 7 in the first two rows of Figure 10. We

then plot a periodogram for the given series and observe the highest spectra to occur at j/T = 0.02 (see the
bottom left image in Figure 10). Hence, our best Walsh-approximation of the sequency of y (0.02) is fairly
close to the true sequency (0.0175). We lastly perform sublevel set filtration on our Walsh periodogram to
compute a persistence diagram (the bottom right image in Figure 10). See Ravishanker and Chen [2019] for
another application of sublevel set filtration on the periodogram of a modified Walsh transform.
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7 Persistence Landscapes

Figure 10

The construction of persistence
landscapes provides a way to study
the underlying distribution of persis-
tence diagrams for a given time series
(Ravishanker and Chen [2019]). More-
over, landscapes are typically used to
cluster the data into meaningful topo-
logical parts (Ravishanker and Chen
[2019]). That is, Bubenik [2015] was
able to show that given a sample
of n persistence diagrams, one can
construct their corresponding persis-
tence landscapes, and the sample mean
of these landscapes converges to the
true mean of the underlying distribu-
tion of diagrams. Hence persistence
landscapes, under the right conditions,
model the underlying structure of the
diagrams for an observed time series
(see Bubenik [2015] for a more in-depth
explanation).

Suppose we wish to study the per-
sistence landscapes of all p-homology groups in a given persistence diagram. Then the v-th order persistence
landscape of these groups is given by:

PLp,v(l) =

{
min{l − σp,k,1, σp,k,2 − l} if l − σp,k,1, σp,k,2 − l > 0

0 o.w.

for all kp p-homology groups, k = 1, . . . kp, each with a lifetime [σp,k,1, σp,k,2). Here l is a real number.
As an example, we compute the persistence landscapes of all 1-homology groups produced from our

time series z(t) with a frequency of 8 cycles per time period. We first apply Taken’s Embedding to z with
dimension 2 and lag 160 to generate a point cloud with 40, 2-dimensional points. We then implement the
steps described in Ravishanker and Chen [2019] below to produce persistence landscapes of the resulting
diagram. See Figure 11 for the persistence diagram of only the 1-homology groups of z (on the left) and its
corresponding persistence landscapes (on the right).

STEP 1. We obtain all 1-homology groups from the persistence diagram of the embedded points of z.
We have 4 1-homology groups, so k1 = 4.

STEP 2. We construct a grid of real-valued inputs l to plug into the persistence landscape function
PL1,v(l). We sample 501 evenly-spaced values of l from the minimum birth time M1 = mink=1,...,4{σ1,k,1}
to the maximum death time M2 = maxk=1,...,4{σ1,k,2}. Here, the step-size for our points l is given by
δ = M2−M1

500 . Thus our inputs are l = M1,M1 + δ,M1 + 2δ, . . . ,M2.

STEP 3. For each input l, we compute the persistence landscape PL1,k(l) for k = 1, . . . , 4. Hence, for
each of our 501 inputs l, we should have a list of 4 outputs PL1,k, one for each order k.

STEP 4. We lastly sort the landscape values corresponding to each value of l in decreasing order (from

largest to smallest). We denote the ordering for each set of outputs as PL1,k(l) = PL
(1)
1 (l), PL

(2)
1 (l), PL

(3)
1 (l),

PL
(4)
4 (l), where the v-th order persistence landscape of the 1-homology groups is the set of all 501 points

PL1,v(l) = PL
(v)
1 (l) for v = 1, . . . , k1 = 4.

The idea here is that the peak of each landscape represents an important topological feature in the
diagram. The lower the order v, the greater the significance of the 1-dimensional topological feature (i.e.
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Figure 11

the longer it survived in the filtration). For instance, notice that in the 1st order landscape, the blue peak
represents the longest-surviving 1-homology group (denoted as a blue point in our persistence diagram).
On the other hand, the 2nd order landscape depicts three peaks (shown as red points). These three peaks
correspond to the remaining three 1-homology groups in our diagram (denoted as red points ). These red
points are closer to the diagonal, and hence represent 1-homology groups that didn’t survive as long during
the filtration.

7.1 More Applications of Persistence Landscapes

Using a Smoothed Weighted Fourier Transform. This method is used to generate persistence
landscapes of continuous time series. Particularly, Wang et al. [2018] uses the smoothed weighted Fourier
transform µ̂Tµ

(t) of an EEG time series to construct persistence landscapes of various orders. This transform
is summarized by Ravishanker and Chen [2019] as:

µ̂Tµ
(t) =

∑
j∈I1

e−( j
T 2π)2σajcos(

j
T 2πt) +

∑
j∈I2

e−( j
T 2π)2σbjsin(

j
T 2πt).

Here, aj = 2
T

∑T
t=1 xtcos(

j
T 2πt) and bj = 2

T

∑T
t=1 xtcos(

j
T 2πt) are the regular Fourier coefficients that

are normally distributed with mean 0 and constant variance σ2. The variance is user chosen.
The Fourier sum a0 is defined as the sample mean of all time series points, a0 = 1

T

∑T
t=1 xt. The list of

possible frequencies for cosine and sine transforms are given respectively as I1 = {j = 0, . . . , k : |aj | > Tu} and
I2 = {j = 1, . . . , k : |bj | > Tu} for Tu = s

√
2log(n). The parameter k is user-chosen as the maximum number

of cycles for which to construct the Fourier sum. Wang et al. [2018] selected a maximum frequency of k = 99
cycles for their T = 500 EEG points. The parameter n is the number of points in each phase of the series.
Lastly, to compute the median of absolute deviation, s, we first compute a(m) = median{|ai| : i = 1, . . . , k}
and b(m) = median{|bj | : i = 1, . . . , k}. Then s = median{|ai − a(m)|, |bj − b(m)| : i, j = 1, . . . , k}. We
apply this method to our original time series y(t) with a frequency of 4 cycles for every T units of time. We
select T = 500 evenly spaced time points so that our series is {y(t)|t = 1, . . . , 500} and choose the maximum
number of cycles to be k = 99. We select the period to be 500 so that n = 500 (there are 500 points for every
phase of y(t)). We then compute the Fourier Transform of these points using our Morse Function, µ̂Tµ

. We
plot the original series in black and the transformed series in blue in Figure 12. Wang et al. [2018] performed
sublevel set filtration on the Morse function to compute a persistence diagram for landscape computation.
Instead, we implement Takens embedding to compute N = 477, 2-dimensional points (d = 2, τ = 23). We
plot the resulting point cloud in Figure 12. We next compute the persistence diagram using Vietoris-Rips
filtration on the point cloud with the function gridDiag().
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Figure 12

We then use the diagram to com-
pute the persistence landscape of the 1-
homology groups presented throughout
the filtration (13 total). The resulting
13 persistence landscapes of orders v =
1, . . . , 13, along with the persistence dia-
gram of y are shown in Figure 12, as well.
We can see that the highest peak pre-

sented in the 1st order landscape PL
(v)
1 (l)

corresponds to the longest-surviving 1-
homology group displayed as the red tri-
angle farthest away in the diagram.

Using a Fast Walsh-Fourier Trans-
form. This method is used to gener-
ate persistence landscapes of discontinu-
ous time series. We will provide an appli-
cation of computing the persistence land-
scape of a Walsh-Fourier (square-wave)
transform of three categorical time se-
ries similar to x(t), y(t), and z(t) (Ravis-
hanker and Chen [2019]). As previously defined in section 6.2, Walsh functions are typically used to approx-
imate time series with square-like signals for which frequency is analagously defined as sequency (number of
zero-crossings per every T time units).

We denoted the j-th value of the Walsh function with t crossings as W (t, λj), and the corresponding Walsh

transform of the series x(t) as dw = 1√
T

∑T−1
t=0 x(t)W (t, λj). We introduce a fast Walsh Fourier transform

(FFT) using the Cooley-Tukey algorithm (Cooley and Tukey [1964]). Cooley & Tukey define the FFT of a
series {x(t)|t = 0, . . . , T2 − 1} as follows:

x(j) =
∑T2−1

t=0 A(t)W jk for j = 0, . . . T2 − 1

where the Walsh values W are defined as complex numbers W = e2πi/T with complex coefficients A(t).
Here, T2 = T if T is a power of 2. Otherwise, we define the next power of 2 greater than T to be T2 = 2p for
some natural number p. We then add a zero-padding of T2 − T zeros to the original series x(t) (Ravishanker
and Chen [2019], Shanks [1969]).

The Cooley-Tukey algorithm works by splitting the series x(t) in half, with one half xe(t) being all even-
indexed measures and the other half xo(t) being all odd-indexed measures. Then the Cooley-Tukey FFT is
applied to both half-series:

We(j) =
∑T2−1

t=0 A(t)e2πij/T , j = 0, 2, . . . , T2 − 2

Wo(j) =
∑T2−1

t=0 B(t)e2πij/T , j = 1, 3, . . . , T2 − 1

Then the FFT of the entire series x(t), W (j), is given as x(j) = We(j) +
∑T2

2 −1
j=0 (e2πiT2)jWo(j) for

j = 0, . . . , T2

2 − 1 and x(j) = We(j − 2) +
∑T2−1

j=
T2
2

(e2πiT2)jWo(j − 2) for j = T2

2 , . . . , T2 − 1 (Nabeel [2023]).

We implement Cooley-Tukey using the fft() function in R (a similar function is also available in Python
using the SciPy package). We specifically apply Cooley-Tukey transformations to three categorical series
x(1, t), x(2, t), and x(3, t) with respective zero-switches 2, 4, and 8 (between ±1). We then compute the 1st
order persistence landscapes of these three transforms using Chen et al. [2019]’s method. We plot the three
categorical series as well as their FFT’s in rows 1 and 2 of Figure 13, respectively. We now have three FFTs:

W (2, λj) of x(1, t)

W (4, λj) of x(2, t)

W (8, λj) of x(3, t)

9



Figure 13

The 1st order persistence landscape of the n-th transform is given by PL(n, l) = min(V1(n, l), V2(n, l))+
for n = 1, . . . , N and l = 1, . . . , L, where N is the number of series (3 in our case) and L is the number of
inputs (we select L = 500). The parameters of this function are defined as follows:

V1(n, l) = Wmin − (l−1)(Wmax−Wmin)
L−1 −Wn,min}

V2(n, l) = Wmin − (l−1)(Wmax−Wmin)
L−1 −Wn,max}

Wn,min = minj{W (n, λj)} (the minimum value of the nth FFT)

Wn,max = maxj{W (n, λj)} (the maximum value of the nth FFT)

Wmin = minn{Wn,min} (take the smallest value among the N Walsh
minimums)

Wmax = maxn{Wn,max} (take the largest value among the N Walsh
maximums)

(a)+ is the positive part of a.

See the third row of Figure 13 for the 1st order persistence landscapes of all three Cooley-Tukey transforms.
Notice that all of our landscapes are linear, i.e. there are no peaks. This could be due to the fact that
landscapes of Fast Fourier Transforms are typically used to summarize unique topological features in the data
rather than in their persistence diagrams, and our three categorical series all have evenly-spaced sequencies
(i.e. no left or right skewed zero-switches) so any uniqueness of the features presented in the transform may
not be revealed in their landscapes. Another FFT is defined by Shanks [1969]. It is defined as follows for
t = 0, . . . , T2 − 1 (T2 = 2p):

10



W (0, j) = 1 for j = 0, . . . , T2 − 1

W (1, j) =


1 for j = 0, . . . ,

T2

2
− 1

−1 for j =
T2

2
, . . . , T2 − 1

W (t, j) = W (
[
t
2

]
, 2j) ·W (t− 2

[
t
2

]
, j)

j = 0, . . . , T2 − 1, t = 2, . . . , T2 − 1.

where
[
t
2

]
is the integer part of t

2 (i.e.
[
3
2

]
= 1).

8 Other Uses of Topological Summaries

Topological summaries of time series have also been utilized for clustering, classification, and signal break
detection as discussed below (Ravishanker and Chen [2019]). One common pipeline for feature construction
in the context of clustering begins with de-noising a time series, embedding it into a point cloud, constructing
a persistence diagram, and building features from the diagram for K-means clustering. Takens Embedding
and Vietoris-Rips filtrations are two methods that have been used for this process. Pereira and de Mello
[2015] applied this pipeline to cluster topological features of two sets of flower growth series, one with periodic
structure, and the other with aperiodic.

Figure 14

Constructing topological features from
time series has also been used for build-
ing predictive models (classifiers). This
methodology typically begins by embed-
ding a time series, producing a persis-
tence diagram, constructing topological
features from the diagram, and feeding
these features into machine learning mod-
els to make predictions about the se-
ries. Altun and Barshan [2010] and Al-
tun et al. [2010] used this methodology to
build classifiers for 1-dimensional homol-
ogy groups of a series of daily and sports
activities.

Feature construction has also been
used to detect significant changes or
breaks in time series data. Common
steps for this approach begin by em-
bedding a time series, producing a dia-
gram, using the diagram to build persis-
tence landscapes, using these landscapes
to construct an L1-norm (Ravishanker

and Chen [2019]), and using the L1-norm to construct feature vectors for k-means clustering. The clus-
ters intend to detect critical transitions in the time series. Gidea et al. [2018] applied this pipeline to detect
clusters of log-price cryptocurrency data occurring just before the crash of their assets.

9 Stability of Current Topological Summaries of Time Series

A topological summary of a time series is considered stable if its features and expected behaviors are
preserved when subject to changes in the parameters involved within the TDA approach itself. Typically,
stability is shown using distance metrics between topological features. Current stable TDA approaches include
persistence diagrams and persistence barcodes. Naturally, it is important to ensure that TDA approaches for
studying time series are stable in nature. We hence review existing stability results for such TDA methods.
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9.1 Takens Embedding

Takens embedding, under the right assumptions, has been shown to preserve distances between distinct
states of the attractor of a dynamical system (Yap et al. [2014]). Let the time series s(t) be a dynamical system
and s(t0) a given state of this system at time t0. Then s(t) is the image of its observed state space containing
all states x(t) ∈ M ⊂ RN for some manifold M. The mapping that produces this image is defined as the
function h : RN → R given by h(x(t)) = s(t)∀t. Given an interval τ of s(t), we define the flow of the state space
from one state to the next by the flow function ϕ : M → M, where ϕ(x(t)) = x(t+ τ) for x(t), x(t+ τ) ∈ M.
If the flow of a given state space only moves in one direction, this is called dissipative flow, and it implies
that the states of s(t) converge to a submanifold of M, called the attractor of s(t). That is, x(t) → A ⊂ M
as t → ∞. We define Takens embedding as a coordinate mapping of the states in A to M -dimensional points
in a reconstructed state space. More specifically, Takens embedding of the state space of a dynamical system

s(t) is given by F : RN → RM such that F (x(t)) =
(
s(t), s(t+ τ), . . . , s(t+ (M − 1)τ)

)T
. Observe that if h

is the identity map, then s(t) = x(t), and we define the mapping F just as we do in section 2 given M = d.
Takens embedding preserves the topology of the attractor, but not its geometry (Takens [1981]). That is, F
ensures that the mapping between A and F (A) is one-to-one (maps any 2 points in A to 2 distinct points
in F (A)), but does not guarantee that points close together (far apart) in A remain close (far) in its image
under F . Yap et al. [2014] shows the geometric stability of Takens embedding for linear observation functions
h that map points in A to its trajectory manifold under F . Consider the basis of linear observation functions
hp : RN → R for p = 1, . . . , P given by hp(x(t)) = s(t) for all states x(t) ∈ A. Let hα be one such mapping

and define Takens embedding as Fα(x(t)) =
(
hα(x(t)), . . . , hα(ϕ

−M+1(x))
)T

for smooth flow function ϕ.

Then define the trajectory vector of state x(t) ∈ A as g̃(x(t)) =
(
x(t), ϕ−1(x(t)), . . . , ϕ−M+1(x(t))

)T

∈ RM .

Hence the trajectory of A is given as g̃(A). Yap et al. [2014] was able to show that Fα with M delays is a
stable embedding of g̃(A):

(1− δ)||g̃(x(t))− g̃(y(t))||22 ≤ ||Fα(x(t))− Fα(y(t))||22 ≤ (1 + δ)||g̃(x(t))− g̃(y(t))||22

for all distinct points x(t) and y(t) on A. This result only follows the assumption that the infemum over
all soft ranks of the differences Gx(t)−Gy(t) is bounded below by a required threshold, where Gx(t) and Gy(t)

are the matrix versions of the trajectory vectors g̃(x(t)) and g̃(y(t)), respectively. See Yap et al. [2014] for
more detailed descriptions.

9.2 SW1PerS Embedding

SW1PerS embedding remains stable with regards to computing distances between embedded points in a
sliding windows point cloud, producing scores when input series are subject to noise, as well as producing
point clouds containing bounded distance between any pair of their points. Firstly, SW1Pers necessarily
obtains a distance measure between points in a point cloud of a given signal that correspond to the similarity
between their respective snapshots. Applying cubic splining and computing a moving average on any input
series allows SW1Pers to handle particularly noisy series. As well as this, normalizing and centering points in
the point cloud enables SW1PerS to guarantee the distance between any two points remains bounded above
by π

16 , as well as to handle input series with trends, damping, and a variety of amplitudes. These aspects of
SW1Pers maintain its stability in terms of producing periodicity scores when subject to several changes in
its input parameters.

9.3 Persistence Landscapes

Persistence Landscapes are shown to preserve distances between pairs of functions defined on a topological
space X, and hence are stable. Bubenik [2015] was able to prove stability of persistence landscapes using
Wasserstein and Bottleneck distance as defined in section 3. Recall that a persistence module of a filtered
simplicial complex at a given level of the filtration Xr is the collection of all homology classes H(Xr) paired
with the set of all linear maps induced between H(Xr) and H(Xr′) for r ≤ r′, H(lr

′

r ). Here, l is the induced
linear map from Xr to Xr′ . Let M and M ′ be a pair of persistence modules of a given filtration, and λ and
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λ′ be their corresponding persistence landscapes. Then for 1 ≤ p ≤ ∞, the p-landscape distance between
M and M ′ is given by the p-norm of the difference between both landscapes: Λp(M,M ′) = ||λ − λ′||p.
Equivalently, the p-landscape distance between the corresponding diagrams of M and M ′, D and D′, is given
as Λp(D,D′) = ||λ − λ′||p. Bubenik [2015] was able to prove the stability of the persistence landscape with
respect to the supremum norm by showing that for some functions f, g : X → R defined on a topological
space X, the ∞-landscape distance between modules M(f) and M(g) is bounded above by the supremum
norm of the difference between f and g:

Λ∞(M(f),M(g)) ≤ ||f − g||∞

Bubenik [2015] was also able to show stability for finite p using persistence weighted p-Wasserstein distance
between two diagrams D and D′. Let xj = (bj , dj) ∈ D and ϕ(xj) = x′

j = (b′j , d
′
j) ∈ D′ for bijection

ϕ : D → D′. Then lj = dj − bj is the persistence of topological feature xj ∈ D and ϵj = ||xj − x′
j ||∞

is the maximum distance between xj and any other topological point x′
j in D′. The persistence weighted

p-Wasserstein distance between D and D′ is given as the following infemum over all possible bijections ϕ:

W̄p(D,D′) = infϕ:D→D′

[∑
j ljϵ

p
j

] 1
p

. Bubenik [2015] hence shows that the persistence landscape is stable

with respect to the p-landscape distance if p > k, whenever topological space X implies bounded degree-k
total persistence. They do so by proving that a preserving upper bound on this finite landscape distance
exists:

Λp(D(f), D(g))p ≤ C||f − g||p−k
∞

∀p ≥ k and tame Lipshitz functions f and g with C = CX,k||f ||∞
(
Lip(f)k + Lip(g)k

)
+

CX,k+1
1

p+1

(
Lip(f)k+1 +Lip(g)k+1

)
. Here, CX,k is the constant that satisfies the bounded degree-k total

persistence of X.

10 Discussion

A common historical point of interest when studying time series has been the analysis of its topological
features, as well as how these features change in relation to periodicity. Topological feature analysis follows
a common pipeline across most methods we’ve discussed. One begins with a (possibly noisy) time series, de-
noises the series, embeds the series into a point cloud, performs a filtration on the point cloud, and produces
a persistence diagram that represents the topological and periodic features of the time series. Common
methods we’ve discussed within this pipeline include the study of time series data, its Fourier or Walsh
approximations, the use of Takens and Sliding Windows embeddings, as well as the use of Vietoris-Rips
or sublevel set filtrations of periodograms or Morse Functions for diagram construction. Another aspect of
topological analysis that we’ve discussed is the distribution of persistence diagrams for a given series. This
includes the comparison of similarities and dissimilarities between diagrams using Wasserstein & Bottleneck
distances, as well as computing topological summaries of these diagrams using persistence landscapes. We’ve
seen that persistence diagrams of embedded time series, as well as its Fourier and Walsh representations
have both been used to construct persistence landscapes. Periodicity (sequency) of time series has also been
studied through both its quantification using a score function (SW1PerS), as well as through its estimation
using spectral analysis of Fourier (Walsh) approximations. Along with the development of several topological
summaries of time series (i.e. Takens, SW1PerS, & landscapes), stability results have also been proven.

11 Future Work

While hundreds of machine learning models have been developed to classify time series data, many models
have focused on prediction of univariate time series (Faouzi [2023]). Of those multivariate models that have
been developed (i.e. TOTOPO, Franceschi, 1-NN DTW (Dynamic Time Warping), 1-NN Euclidean, etc.),
even these have limitations with classification. For instance, TOTOPO does not perform as well on time series
with classes of data that are too similar (Pilyugina et al. [2020]). As well, several methods of cluster analysis
on time series data have also been done (i.e. Temporal-based, Representation-based, Model-based, etc.) and
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also pose difficulties when applied to high-dimensional time series (Heka.ai [2022]). Among these limitations,
one pertains to knowing which is the optimal choice of similarity (distance) measure that defines the clustering
of time series data points. Popular measures include Hausdorff distance, DTW, Euclidean distance, etc. Most
often, deciding which measure to use is a process of trial and error, as well as making educated decisions
based on the nature of the data and the type of questions one is trying to answer (Heka.ai [2022]). Stability
has been shown for persistence landscapes and Takens embedding, however stability for Takens embedding
has only been shown for linear observation functions h on trajectory manifolds of Riemannian attractors
A. Yap et al. [2014] asserts that that stability of these embeddings has yet to be explored for nonlinear
observation functions, trajectory manifolds of non-Riemannian attractors, and for submanifolds F (A) rather
than trajectory manifolds g̃(A). SW1PerS shows stability when subject to changes in parameters and in
terms of bounded distance, however I have yet to find literature formalizing the notion of preserving distance
between points in a given series.

My work aims to contribute and hopefully address some of these limitations posed. With regards to
time series classification, I hope to construct another alternative machine learning approach that is able to
provide stronger predictions on data containing similar classes, and can be applied to both univariate and
multivariate time series. I also plan to obtain a clustering method that is able to be used on high-dimensional
data. Most literature has not presented cluster analysis of high-dimensional series using Mapper Algorithm,
so this is one method for which I am interested in applying multivariate series. In addition, I hope to develop
an efficient method for selecting an optimal choice of similarity measure for both clustering and classification.
I also aim to further explore the stability of Takens embedding subject to different parameters as previously
mentioned. Lastly, I would like to formalize and prove the stability of SW1PerS embedding in terms of
preserving distances between points in a given time series. Through these processes, I hope to contribute to
the somewhat sparse field of multivariate topological time series analysis, address the setbacks regarding the
similarity measures and high-dimensionality that comes with this added complexity, as well as prove more
stability results for embeddings of time series.
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